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Strong contidence intervals: A compromise between

the Gaussian and the slash

Stephan Morgenthaler
Technical Report No. 253, Series 2

Department of Statistics
Princeton University

Princeton, New Jersey 08544

ABSTRACT

In this report we define strong confidence interval
procedures and discuss their properties. Strong conti-
dence means that the reported confidence level is
achieved even conditioned on configurations. Furthermore
this is true tor both the Gaussian and the slash sampling
situations. We will show how such a procedure can be
obtained and compare its performance to some popular
non-parametric contidence intervals.

1. INTRODUCTION

Robust contidence interval estimation is not a heavy researched

area ot statistics. Around 1945 the first papers about non-

parametric methods appeared. These procedures provide us with

confidence intervals which reach the reported contidence coefficient

under any -- or any symmetric -- sampling situation. In this sense

they are robust (robustness ot validity).

In this report we plan to emphasize (some more) the idea ot

having a highly resistant confidence coefficient. In Section 2 we

Prepared in connection with research at Princeton University, spon-
sored by the Army Research Ottice (Durham). The computing facilities
were provided by the Department ot Energy, Contract DE-ACO2-
81ER10841.
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will introduce the formulas and methods for a single, known sampling

situation. Section 3, then deals with the case ot unknown shape. We

are concerned about the dangers of heavy-tailed situations which

leads to the choice o± the slash-shape as our counterpart to the

Gaussian.

'p4

2. An equivariant confidence interval procedure for a location

parameter.

A lot ot work has been done in the area ot robust inference

about location and scale parameters. Theoretical methods like

asymptotic minimax and influence curves handle the case ot known

scale in a convincing way and the theory is widely accepted. Hand in

hand with this development went the recognition of robustness as a

research topic in applied statistics. We therefore hardly have to

argue in favor ot robust procedures.

The need tor more work connected with specific sample sizes is less

widely acknowledged. The Princeton robustness study (Andrews et

al(1972)) is an early example tor this kind ot research. There

several location estimators are tested in a variety ot situations and

sample sizes.

In the following sections we will discuss an approach which

combines the two ideas o robustness and small sample study. The

topic is confidence interval estimation, where our knowledge is quite

limited.

Let us start our discussion with the classic location and scale

problem, where

November 15, 1983
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= (yly2,y3,",yn)

V. is a vector o iid random variables drawn from the distribution

F~~x G R , c GR

which is fixed and known except tor the location p and the scale a.

Let us assume that the vector Iis ordered, i.e.

? [i Y- Y2 1-< "' - I Yn "

From the beginning we restrict attention to location and scale

eguivariant procedures. By this we mean the tunctional property ot

the procedure T

T(sy + ri) - sT(I) + r

whenever sGel+ and rGR, i.e. under certain canonical transtormations

ot the sample t, the value ot T transforms canonically too (2 stands

tor the vector in Rn whose components are all 1). Such functions
are best studied in reterence to location and scale configurations,

i.e. the equivalence classes ot the equivalence relation defined

on R n

x equivalent to itt there is a positive, real s and a real

t such that j - s(tt + *).

Any location and scale equivariant mapping

T : n __> R

will be completely specified in any configuration by fixing its value

November 15, 1983
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G R tor a class-representing element since by the detining

relation for equivariance

T(J?) - T(s(tl' + e)) - sT(t + e) s(t +4

When doing numerical integrations (with respect to conditional

distributions given the configuration) it is advisable to choose the

class-representing element such that

Ca = -Iilaa

C b +1

4A and (since we have ordered trom the beginning) c< c 2 < ... < c n . A

good choice seems to be index a around n and index b around -C . This

means that we choose as our element representing the configuration,

that sample which satisties the two above restrictions. O course

this element will be uniquely defined.

Another way ot thinking about the class-representing elements is to

say that they are base points tor parametrizing configurations, which

are two-dimensional classes ot samples.

Any sample - (y 1 ,Y 2 ,...,yn) determines uniquely its

contiguration (we use the word contiguration also to denote the

class-representing elements) by

k a Ty y

where sy - 2 and ty - + Ya And so we can parametrize

y Yb a-

j n by

November 15, 1983
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(ts ClC 2 ... ,C n ) tGR,sGR+

Remember that (clC 2 ,...PCn) - c is (n-2)- dimensional since two

values are pre-tixed.

It we have a sample y , we know the contiguration + and it can

be argued that this contains all ot the "allowed" information -- we

should not be intluenced by the actual values ot sy and t . The

"point pattern" ot the sample by itself should tix our ideas about

location and scale. J.W. Tukey's picture tor this is a code clerk who

pre-processes our sample and only gives to us the configuration P

onto which we have to base our interence (winterence on the

it-scale"). Atter handing him our estimated values back, the code

clerk can use his knowledge of sy and ty to transtorm the answer back

to the p-scale, he simply has to add ty back in and multiply by sy.

The contigurations partition the sample space Rn into 2-

dimensional subsets -- parametrized by tGR and sGR+ -- which are the

largest sets where a general location and scale equivariant mapping

behaves pertectly simply and can be defined by a single real number.

But contigurations are also connected with the probability

structure on the sample space induced by iid sampling trom

F(.-Z) jeiG , o'i3+. The idea works because ot the equivariance

properties ot the probability structure, i.e. the canonical changes

which take place inside configurations it the parameter values are

changed.

Let k (tslpo',c ) denote the conditional density given the

contiguration e. We have to find the Jacobian ot the transtormation

November 15, 1983
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Yi s(t + ci ) i ,

It we take the coordinates at y in the order (yaYbYl,...,yn) the

Jacobian is equal to:

s t-1

abs(det( s t+1 . )) - 2sn -1

s 5 . SIn-2

Hence we have

kF(s,t1J,,Crf) dsdt is proportional to

n-1 n (s(t+ci)-J)
s - it( ds dt,

Sn- n
i.e.proportional to 1 n (t@.(t-0 + c.))O-dt,

where t is the density tunction corresponding to F.

So kF(S,tlmf7a*,) ds dt - kp(p,qO,1,c 1 ) dp dq it we put

pa

(2.1)

q st-a t _uS S

or

s- pa

t q + pa.

We learn tram this that the optimal choice at location and scale

equivariant procedures is not dependent on the true parameter values

pa and a.. By coding the data in terms at a contiguration, we have got

November 15, 1983
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rid of the "true" parameter values, since any choice we make on tht

c-level has to be used tor all possible "true" parameter values.

Figures 2.1 through 2.4 show a series ot contourplots in the

(t,s)-plane ot the densities k(s,tlO,l,c ) tor two configurations in
twenty dimensions. Fig. 2.1 and 2.2 show the Gaussian and slash (see

3.1) in a Gaussian- drawn, nicely behaved contiguration. Fig. 2.3 and

2.4 do the same with a slash-drawn configuration. The configuration

is included in these pictures with "*"'s, the scale on the t-axis is,

however, not relevant. We can see how the "outliers" in the second

case influence the Gaussian density, which is pushed to small s-

values and very stretched in the t-direction. The slash picture does

not exhibit such drastic changes. o0 special interest is the

difference between the two densities in any given, fixed

*: configuration, because a big such ditterence tells us, that the two

sampling situations "interpret" the data quite differently and lead

us to quite different conclusions. The contigurations used tor these

plots are

For the Gaussian-drawn c=(-l.4,-1.3,-l.2,-l.l,-l.0,-.91,

-.76,-.63,-.30,-.14,-.03, .23, .43, .64, .89,1.0,1.5,1.5, 1.6,

3.2)

For the slash-drawn ,,(-13.8,-6.7,-1.5,-1.1,-1.0,-.90,-.65,

-.51,-.39,-.09,-.01, .32, .70, .78, .91,1.0,1.2,1.3,2.8,9.5).

example:

It we want to find the location estimate T with minimal'S

conditional mean square error, we have to choose T( 2 P ) -- i.e. the

November 15, 1983
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estimated value on the *-scale -- such that

-~~ 2ave (T(c ) + t) - &121pacl =

., Ivel(T(d) + t) 2S2-2(T(t) + t)sP + P21PrCt

is minimal. Hence

ave((T(*) + t)s 2 1p,co, ] avejs~lIj,a,]•

or

4 2
T (c) . j avetsii.o,c -avetts 20 ,o,c I

ave(s 2  ,7,e

":., oIo slNu-tS) k FlS,tl ,CT,eP dsdt
-OOOO

0000
I s -s (s'tIP7' ) dsdt

OFOOO

0 00 04)dd

-fIop(qp) k (p,qJ0,e) dpdq
S"000 (see 1.1)

I _p 2 k F(p,qlO,l,e) dpdq

b 00

-ave[qp 10'c T. (2.2)

avetp 2 10,1,e] ,

This invari.ace result is intuitively obvious: it a code clerk

gives the contiguration 2 to the statistician and asks tor a "good"

1o0CAtiof q.stimatle, ht: h , 1.!o': ,osa w:ith the same answer no matter

41 what the true parameter values p and a.

For turther discussion ot this problem see: Pitman(1938),

November 15, 1983
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Fraser(1979), Pregibon and Tukey(1981), Bell and Morgenthaler(1981).

Since the values ot the parameters ju and a do not matter, we

will always calculate our integrals with a standard torm

- 0 , a' - 1 and otherwise not mention them.

The observation that the contiguration c* contains all ot the

allowed intormation is tormalized by the statistical notion ot

ancillarity. The distribution across the 2-dimensional

contigurations, i.e. the trequencies of tailing into contigurations,

only depends on the shape F( ) but not on the actual values ot

;j and a. This is true since the step trom the sample to the

contiguration c' involves the subtraction ot a "location" estimate
-a-4

and division by a "scale" estimate, so that the distribution ot c no

*longer involves the parameters uJ and a (and hence is pure shape).

This tact is used as an argument to condition on the ancillary

statistic c -- the conditional distribution contains the

"information" about location and scale (see: Fisher(1934)).

These are the ideas we want to use. They greatly simplity all

interence problems bout pz and a. Firstly all our mappings will be

uniquely detined on each contiguration cby a single real number tc.

But secondly the choice oft c is often possible without reterence to

p- . other configurations and we hence deal with a "simple" 2-dimensional

problem no matter how big the sample size.

2.1. The single situation contidence distribution.

Let us tix a contiguration c and a shape F ( ) in standard

torm, i.e. j - 0. Conditioned on e we deal with the 2-dimensional

November 15, 1983
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conditional density

n-l n
S i t(s(ci+t))

k (S t)- (2.3)F 000 n n
I_ - I t(s(ci+t)) dsdt
00 i-i

d

where C' (Cl,...cn) and t(x) - -F(x).

example: Gaussian case (F - §)

snNx - - ;(cw)2 -

(a) (n-3) (n-5) .. (2or (-1):

! The normalizingj constant in this equation has to be understood as

- (n-3)(n-5)...2 it n odd

1

- (n-3)(n-5)...() 2 it n even.

Now we want to study the ettects ot setting an upper bound tor the

parameter p. It u is the value ot the upper bound statistic U on the

i?-scale, i.e. U( P ) - u, the statistic is detined on the whole

contiguration by

u(1) - U(s(¢+ti)) - s(u+t)

(location and scale equivariance).

We are interested in the coverage probability detined by

CO F(u) :- PeF[u(y) > 012*)

November 15, 1983
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* It follows

CoP(u) = PFIs(u+t) > Ole ) = PF[t > -u1I ) 1

0000Co- OF(U - Ik F(S~tJ ))dsdt. (2.4)

b -F

Co (u) is the tunction which tor a choice ot an upper bound u on the

c-scale gives as its value the conditional probability ot the

bound statistic actually being an upper bound for the parameter tJ on

the given contiguration.

*remark:

Again COF(u) is not dependent on the values ji and a which are used to

calculate the integrals. For a shape F( ) not in standard form we

would have

Co (u) a P F[U (y) > ,l P [t > E-uJ
.. )JO l ,(7# F ,r, F

00 00

4U k,(s,tb~j,a,c+) dsdt

4r U

0000
I 4k F(P,qtO,l,c ) dpdqj CoF(U) (see 2.1)

---

(t Ru o >q = R-u-! a -U) .
s s 5

From (2.4) we see that

CoF(u) -- > 1 as u--> oo

CoF(u) -->0 as u-- oo

November 15, 1983
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which is consistent with our intuition. CoF(u) is like a distribution

tunction and can be used to detine contidence intervals tor the

location parameter /a.

Whenever we choose L(c ) and U(e) such that

CoF(U(c)) - CoF(Llc )) - .95 we have a 2-dimensional piece ot a 95%

contidence-interval procedure which has exactly 95% coverage
-..

probability conditioned on the contiguration. The upper bound ot the

interval is below p with probability 1 - Co(U(c)) and the lower

bound is above with probability Co(L(t)) and theretore the interval

covers the parameter with conditional probability

1 - (1 - Co(U(c)) + Co(L('))) - Co(U(t)) - Co(L(I))

It we choose to do so tor each contiguration, we will have a 95%

contidence-interval procedure, since we get the "overall" coverage

probability by averaging the conditional coverage probabilities,

- which in the above case are constant, across contigurations.

The tunction CoF( ) will be called a coverage distribution or a

contidence distribution. It has the density

d d 0000
~CoF(u) a: coF(u) a-j I tJkF(s, ttIt) dsd t

4OOOO

00

coFlu) bF(s,-ul P) ds. (2.5)

remark:

How does the mean ot the contidence distribution compare with the

minimum-mean-square-error location estimate? The mean m is equal to

November 15, 1983
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00 00
m u kF(s,-ulc) ds du -

0000
I0t000 F(~te dsdt a-ave(tIt),

whereas the "optimal" location estimate to is

to ave(ts (see 2.2).
ave(s2t l)

The "optimal" estimate theretore takes the correlation between s and

t into account.

The contidence distribution is not dependent upon the values ot

the parameters p and a used tor the calculation as we have already

seen. Now we want to explore the behavior under changes ot the class

representing element

Let us tirst look at the case where 0 a ve, i.e. our representing

element is scaled by vGR+. From (2.3) we have

i-
n-ns n t ~sld i+tl)

kF(s,tltC )  
Jul

F 0000 n-1 ln
I " s n t(s(di+t)) dsdt

-00 1-oI
n n
S n  t(s(vc.+t))

0000 n-i n

I' S n t(s(vc.+t)) dsdt
-i0i

~n

(vs) n-i11 t(vs(c +-))

0000 n
I (vs)n- f t(vs(c 4-)) dsdt

November 15, 1983
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'.

n-1o t
(vs) n[ t(vs(c Z))

- i-i iv

00 lnF
Sa tn-l r (a(c+b)) dadb

-00 1=

We used the change ot variables:

!t

a a vs -- > da - vds and b __> db _ dt __ >dadb - dsdt
'V V

The contidence density on the 0#-scale is theretore

00 00
0O

:. coF(uI ) = rkFlS,-uI ) ds a tkFl vs, -  IcP ds

t kF(a,- ) * - I co(J)

We see that the multiplier v behaves like a scale parameter!

Now let us consider the case where -a cP+wt, i.e. our representing

element is translated in the (1,1,...,1) - direction by w G ff. From

(2.3) we have

n-i n
s n  t(s(di+t))

k (stlo) - i. .
F 0000 nn

Ssn-1 nfl(s(d +t)) dsdt

n-1
8 nl t(s(ci+w+t))

0000 nn
f Isn 11 t(s(c 1 +w+t)) dsdt
-oo i=l.

n- 1 n
8 11 t(s(c1 +W+t))

- i=1 k~lS,t+wl ).

0000 5 n-l n kF (~~l
f 8 nIi t(s(ci+b)) dsdt

b00 Nlm

November 
15, 1983
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We used the change ot variable: b = t+w ->db adi.

The confidence density on the i?-scale is theretore

coF-.l - (,-ult)ds k s,(uw)I ,d c (u+w e) .

We see that a "translatoro w behaves like a location parameter. The

behavior under changes or transtormuations ot the class-representing

elements is again following our intuition:

coF(ulvit) I co (21e)

(2.6)

co F(u C +wl) co F(u+wj c)

example: Gaussian case (F -I

Using our expression tor k St.c in formula (2.3) we get

5n-1 .2 n 2 _

00 s exp(- 2 .S (c 1 -u) n n-1

CIO (N) 5 - (c.i- -)2) 2 ds

2.w 2 (n )(-5w. 2 .)2)

n-1

(n-2) (n-4) ..(2or(j2) ii 1i

1 n n

(2w~) 2(n- 3) (n- 5) .(2 or (1) ) C S(c.-u)2

1 u-cs

2 1 n -2
whre s n* -1 5 (c1-c) and t n 1 ()is the familiar t-density

wci nc density in this case has a fixed shape across

November 15, 1983
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contigurations so that we could have chosen our class-representing

elements in such a way that s I and Z 0 in which case the
-. Q° C

contidence density would always be t ( ) in standard form.
C.-

Figures 2.5 and 2.6 show the functions co( ) (see 2.5) tor the

two configurations we used already in Fig. 2.1 through 2.4. The red

tunction shows the slash coverage density and the black one the

Gaussian coverage density, i.e. a Student's-t density with 19 degrees

of treedom. These densities are calculated by using a linear logistic

tit to Co( ). It is clear how outliers in a contiguration greatly

influence the Gaussian coverage density. In the tirst -- Gaussian

drawn case -- the ditterences are not big, the slash density is moved

a bit to the lett, which is reasonable it we look back at the

configuration.

Once we know the conditional confidence distributions tor a

given sampling situation F, we can find a confidence interval

estimator tor any prefixed confidence coetticient 100(1-¢)% in the

tollowing way.

In each contiguration c' we tix the upper and lower bounds

such that the conditional coverage probability is equal to

100(1-¢)% . This implies that the overall confidence level will

indeed be 100(1-c)%. We do, however, still have some treedom in the

choice ot the upper and lower bounds. The most natural choice treats

the left and right tail ot the conditional contidence distribution in

a balanced way, i.e. we leave out 100 2 trom each tail. This now

uniquely -- except possibly in pathological cases -- determines a

confidence interval estimate.

November 15, 1983
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Treating the two tails in a balanced way means that we care just

as much about missing the true location because the lower bound is

too high as missing because the upper bound is too low. Once we have

fixed our idea about the allowed conditional missing probability, the

. balanced division seems the natural thing to do.

example: Gaussian case (F

The coverage density in this case is always a tn_1 -density

with location c and scale s The above procedure is therefore
c

the usual symmetric t-interval.

3. Ston confidence intervals for a location parmeer: A

compromise between the Gaussian and the slash.

In this section we want to study the effects o not knowing the

shape F ot the underlying sampling situation. In order to do this

we will look at the simplest possible case where we restrict

attention to two possible candidates, the Gaussian and the slash.

The latter is the distribution of the ratio o± a standard Gaussian

and a unit uniform which are independent. The density tor the slash

is

2
t(xlj,(7) a (l exp(-(X-1))]22 2'

(2w) (x-i) 2

From the verbal description we recognize the slash as a "continuous"

mixture ot Gaussians with scales which are like an inverse unitorm.

The density shows us the tail behavior as and is theretore like

a t-density with one degree ot freedom ( see Rogers and Tukey (1972))
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for turther insights).

Nonparametric interval procedures-- like the sign interval, the

Wilcoxon signed rank interval and so on -- are an attractive choice

of compromise for many statisticians. These intervals are guaranteed

to reach the desired confidence for all symmetric situations and

hence seem to solve the problem ot compromising between situations

once and tor all. But we would expect that seeking to put such a

vast class ot situations under one hat has its disadvantages.

Furthermore it is not at all clear how these procedures behave

conditionally (on contigurations). All nonparametric tests -- from

which the corresponding intervals are derived -- need an argument ot

equal probability under permutations. They condition on the class of

samples which one gets from the one at hand under permuting around

the hypothesized parameter value. A bit ot thought shows us that this

is an operation which does not preserve the contiguration. It should

theretore be revealing to learn more about the properties of

nonparametric intervals conditioned on a given configuration.

It has been pointed out in the "robustness literature" that the

stability ot the confidence level o± nonparametric procedures is only

one aspect which the statistician tries to keep under control -- this

property has been named "robustness ot validity". Another aspect ot

interest is the efficiency -- which can be expressed in various ways

-- ot a statistical procedure.

3.1. Strong contidence intervals

Even it robustness ot validity is our goal, we need not stop at

November 15, 1983
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nonparametric intervals.

We might reasonably ask tor a confidence interval which has a

"robust" confidence coetticient (or coverage probability)

conditioned on contigurations. In our "two-situation world" this

would mean that the intervals have to be big enough to reach

100(1-4)t coverage probability conditioned on each configuration

tor the slash and for the Gaussian. Of course there will

usually not be such an interval and we have to settle tor at

least lOO(l-c)% coverage probability conditioned on each

configuration tor the slash and the Gaussian.

We already know that over the sample space the slash coverage ot

Student's t interval is conservative. The above approach might then

not be very tar from the classical t-interval. We can also say that

the solution to this problem will end up enlarging the t-intervals in

certain configurations.

It we view robustness as a problem in stability ot coverage

probabilities, i.e. a problem in how sate is the use ot a confidence

interval, we are lead to search tor rather long intervals and our

flexibility in choosing upper and lower bounds is quite restricted as

Figure 3.1 tries to show.

U
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r.,Pot Figure 3.1: Solutionspace [L()U()I) conditioned on contiguration

-6 (c , ... c n )

half-width on the C-scale

The shaded region contains
the confidence Intervals
which vill reach at least the
required conditional cover ge

* .probability In both situati s. Gusa

Gauss:,a=

-) center on the c-scale

In order to study these strong interval procedures we adopt the

tollowing strategy. Our starting point tar each contiguration

consists at the two intervals which have lOO(l-<)% coverage

probability and are treating the upper and lower tail at the coverage

density symmetrically. Figure 3.2 shows the conditional situation.

N b ,

~November 15, 1983
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Figure 3.2: Conditional coverage densities tor the slash and Gaussian

situations and the two symmetric intervals

slash

Gaussian

Inference on the

L L U U -scale

in order to tind a "strong" intervial, i.e. one which has at

least 1OO(1-c)% conditional coverage probability in both situations

we will look at the interval which we get by selecting the maximum ot

the two upper bounds and the minimum ot the two lower bounds.

L - zin(LgIL)

U -max(U 'U )(3.1)9 s

(see Figure 3.2)

Clearly this will be a strong interval which can be tound relatively

easily. There are tour possible cases into which contigurations can

tall:

(a) (L1,U) - ILgig

(b) [LU) - (Ls 1 U5 1I

(c) (L,U) - [Lg9 ,U5
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(d) [L,UJ [L su 9 (3.2)

The cases (a) and (b) are such that one ot the two situations

dominates the other, and the choice of [L,U] is more or less the best

thing one can do. In the mixed cases (c) and (d) however the interval

[L,U] could be shortened further and still be kept strong. The

possible gains from such a shortening however are small compared to

the difticulty in tinding them.

We will therefore examine the intervals given by (3.1) for the

case ot 95% coverage probability. Table 3.1 shows the percentage o±

observed cases (a), (b) and (c)&(d) in the different sample sizes.

Table 3.1: Percentage of observed cases (a), (b) and (c)&(d) (for de-
..nition see (3.2))

I Gaussian situation I slash situationII
sample size I (a) (b) (c)&(d) I (a) (b) (c)&(d)
__ __ _ __ _ I_,_ __ _ ___"_ __ _ __ _ I

.A 20 18% 12% 70% I 80% 0% 20%

_______________I __________________________II
10 1322 5064%so% ' 78% 1~ 20%

589 '~% 31% 7 '-5% 94% 1% 4 %

(In samples of sizes 10 and 20 the numbers are based on 150 slash-

drawn and 150 Gaussian-drawn configurations, in samples of size 5 the

corresponding numbers are 500 and 500!)

The message from this table is striking. The Gaussian situation

is dominating in samples of size 5, where we are most ot the time in

a case as shown in Figure 3.2 and where Student's t interval is close

November 15, 1983
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to the *best" (in terms ot expected length) strong interval

procedure. In samples ot size 5 then, we do not expect that

compromising between Gaussian and heavy-tailed slash is very

- ditticult. The slash intervals are overly optimistic and too short it

judged trom the Gaussian point at view. The Gaussian intervals, i.e.

Student's t intervals, on the other hand seem to do a good job ot

keeping the conditional coverage probability above 95% even in the

slash situation. And this is true whether the samples are drawn trom

a Gaussian or tram a heavy-tailed shape. one might conclude that

maybe more serious challenges to the Gaussian model for location

contidence intervals have to come tram less heavy-tailed shapes than

the slash.

Samples at size 10 and 20 behave roughly similarly, but very

differently fram samples at size 5. In slash drawn samples the

Gaussian situation mostly dominates, but not as overwhelmingly as in

samples at size 5. In Gaussian drawn configurations the mixed cases

are a majority, introducing the slash along with the Gaussian and

thus really contributes a new point at view. In a lot at

contigurations it torces us to acknowledge the tact that Student's t

interval doesn't stretch tar enough to the right or to the lett and

has to be enlarged. A more detailed account at the behavior at the

"strong* intervals tram a contigural point at view gives the

tollowing results.

For samples at size 20, Figure 3.3 shows the conditional

coverage probabilities tar the Gaussian and slash situation. Figure

3.4 is the corresponding picture tar sample size 10. We see how the

N.,~
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Figure 3.3: Stem-and-leaf plots of the cond. confidence levels of
the strong interval (3.1) for 150 sampled configurations of size 20

N 0 150 Median * 0.96295 Hinges a 0.955, 0.9676

Decimal point Is 3 plOClCs) to the left of the colon

24 24 952 :66777778888a8sg9999g999
35 11 953 • 0000111227e
37 2 954 :44
40 3 955 044
8 0 956 S 22334578

49 1 957:
S2 3 958 :777
56 4 959 : 5889
64 8 960 5 23455689
69 S 961 S 11279
75 6 962 : 124699
75 12 963 : 025666788099
63 11 964 : 00234447599
52 6 965 : 113469
46 6 966 : 005579
40 9 967 : 056669999
31 S 968 : 23578
26 4 969 : 1358
22 4 970 : 0067
18 6 971 : 244799
12 6 972 : 002366
6 1 973 : 7
5 2 974 : 29
3 2 975 : 07
1 0 976 :
1 0 977 :

1 1 978 :

Gaussian situation

N * 150 Median 0.9983 Hinges * 0.9809, 1

Decimal point Is 2 placeCs) to the left of the colon

1 1 95 5 1
2 1 95 7
3 1 96: 2
9 6 96 5 667788

20 11 97 : 11233444444
37 17 97 5 55555555555567789
43 6 98 : 122444
48 5 98 : 55999
S7 9 99 Z 002224444

27 99 5 5S5556666667778888889999999
66 66 100 5 000000000000000000000000000000000000000000000000

slash situation

Sf * 4e ', , * , ',,' 4... 9. . ...'_s .-* * ..- ". z"-"". "-: - -" .... .. .
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Figure 3.4: Stem-and-leaf plots of the cond. confidence levels of

the strong interval (3.1) for 150 sampled configurations of size 10

N a 150 Median u 0o9559 Hinges s O.9S 0.962

Decimal point Is 3 pleceCs) to the left of the colon

S.-. 52 52 950 : 0000000000000000000000000000000000000000000000000124
56 4 951 2 6688
62 6 952 : 135678
67 5 953 11Z46
73 6 954 : 344889
75 2 955 : 08
75 9 956 2 012237889
66 7 957 0334588
59 S 958 : 02569
S4 4 959 4557
so 7 960 2 0133469
43 5 961 2 02568
38 9 962 013367789
29 9 963 2 013555689
20 3 964 : 579
17 2 965 : 29
15 4 966 : 0267
11 2 SO : is9 1 968 : 2
a a 969 00

7 Z 7 971 : 23

5 0 972 :
S 4 973 : 0155

Gaussian situation

N * 150 Median • 0.993 Minges * 0.9737. 0.9999

Decimal point Is 2 places) to the left of the colon

4 4 95 2 0923
8 4 95 6899

" 16 a 96 2 00012234
31 15 96 $5567738888899
44 13 97 : 0001124444444
54 10 97 : 5556779999
5 4 98 2 0034
70 12 98 : 555566799999

10 99 2 0012333344
70 24 99 2 556677777788888888S9999
46 46 100 : 0000000000000000000000000000000000000000000000

4 slash situation
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smaller sample size moves us nearer to Student's t interval, which

would have exactly constant 95% conditional coverage probability in

the Gaussian situation. In the slash situation this shows in a trend

to be increasingly *overlong" in samples ot size 20.

The tollowing table gives the expected length ot these

intervals.

Table 3.2: Expected length ot "strong" intervals

' Gaussian situation slash situation

size-5 2.335 (.0003) 103.0 (75.6)

size=10 I 1.458 (.0058) 22.12 (7.54)

size-20 1.021 (.0053) 63.93 (52.2)

In comparison to Table 3.1 we can again see what we noticed by

looking at conditional coverage probabilities. As the sample size

increases one has to enlarge Student's t interval in order to have at

least 95% slash conditional coverage.

The next three pictures, Figures 3.5, 3.6 and 3.7, show us

something about the conditional unbalance or asymmetry ot the strong

intervals. Here we plot the conditional probability ot missing the

true parametervalue at the low (i.e. lett) end vs. at the high end.

Two things are quite noticable. In all three cases most ot the

strong intervals are slightly asymmetric. There is a branch trom

(0.0, 0.0) to (0.025, 0.025) above and below the diagonal --

which contains the balanced intervals. The correction trom

November 15, 1983



-33- O1

?.-. . ."a 6s 0

Ow (4-e 0 s s

0 ~0 *o4

0

'hj• • e141 00

00 0 0 s

0- - n "

000 0 0
*O0 a

p. ,--40 0 ,

."-.. . ,

.00

00
a V-

41
.94*oe 0 0

Is C45 0

a) 
as,,

.) ) • o

pf 0* If)

0 ".
. .. .

E~ 0 c
00* 0 0

1) 0 *o°3

4 -4 0

0 -4j8Ge
0 0a a

v 4%

$4 ON :$ov

i . .-.. .

"" 0 "0 010"0 GO0 a sO

4ST4

: .: :,,-.;,,-., .,,"; ,., '.% .: .-.., : ...; ; , .: - . ..,...0 .



-34-

.,1

.,..,*.. . *

.-. .

-P

.*--- '.•

0. o. , ,-,

VI •

.0 p

41)
0

0

0 S

0 A
00

-. . £ E

.2n
C 0

C 00
14 0 0.

0 ft

S ;41
A"0

0 P

w- C

aw a
200 020 570 10o SO 0

46 4



35

.64

06

-(4

0JS

in
.04 0)
E
V~4

0
W-v4

0

4

0 3y- 00

4 L

0 -

ON 4

I4 I If)



-. '.. =

-36-

Student's t to the strong interval is theretore usually one

sided. Furthermore we notice how the increase ot sample size

influences the picture. More and more points get absorbed into

(0.0, 0.0) -- which means they are overlong -- and the two

branches we discussed are pushed toward the edges.

The above discussion has an interesting consequence: maybe it makes

more sense to compromise with a less extremely heavy-tailed

counterpart than the slash in samples ot size 5. This tinding

disagrees with the tact that with bigger sample sizes the distinction

between samples drawn from the slash and samples drawn trom the

Gaussian becomes more "obvious" -- and that compromising these two

situations is therefore simpler in larger samples (see: Bell &

Morgenthaler(1981)). To try this idea the Oslacu"-distribution was

used together with the Gaussian. This is the distribution o± the
*1

4, ratio of a standard Gaussian and the cube root ot a unit unitorm --

it's density has tails like -L. But still Student's t interval comes
X3

out to be very close to the strong interval -- now strong tor

Gaussian and slacul Table 3.3 shows the numbers.

*Table 3.3: Percentage of observed cases (a), (b) and (c)&(d) (tor de-
Tin-tion see (3.2) note, however, that the slash is replac',J by the
slacu)

I Gaussian situation II slash situation
I II

sample size I (a) (b) (c)&(d) II (a) (b) (c)&(d)
I_ _ II

578% -S s% 20 5% 91 3 s% 7t

Surprisingly little changed by replacing the slash with the slacu. It

*November 15, 1983
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we want to get robustness in the sense of stable conditional coverage

probability under heavy-tailed challenges, Student's t interval

behaves well in samples of size 5 and leaves little scope for

modifications.

3.2. Conditional behavior of nonparametric confidence intervals

As we pointed out in the introduction to this chapter,

nonparametric confidence intervals, which are assured to have a fixed

confidence level "over the sample space" for all symmetric

*situations, need not have a fixed coverage probability conditioned on

the configuration. In this section we will see in a descriptive

fashion how the intervals derived from Wilcoxon's signed rank

statistic and from the sign test statistic behave conditioned on

configurations.

We are interested -- as always -- in 95% confidence intervals

and of course neither of the above procedures will be able to create

a 95% confidence interval for samples of size 5, where the interval

2
defined by the minimum and maximum of the sample has 1 -- = .9375

coverage probability. In order to compare over the full range of

sample sizes, we will include the Orange" - interval for sample size

5. For samples of size 10 and 20 we use logistic interpolation in the

Wilcoxon and binomial tables to get approximately a 95% confidence

interval. On the configuration scale, i.e. expressed as intervals for

cl<c2<...1cn, we use the following intervals:

l4..S .. n
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sign interval Wilcoxon-interval

S si ze=5 [c ,c 5 ] [c1 ,c 5 1

size-l0 .5C 2 +.5c 3 01.5c8+.5c 9 1 [.26w8+.74w9,.74 47+.26w48 ]

size=20 (.82c 6 +.18c 7 ,.82c 1 5+.18c 14j (.34w 5 4+.66w 5 3 .34w 15 7 +.66w 1 5 8

(Wl.**<Wn(n+l) denote the Walsh averages, i.e. ordered by
2

value.) 2

It turns out that the sign interval and the Wilcoxon interval

have quite ditterent behaviors as one looks across situations and

sample sizes. The tollowing table contains the estimated variation ot

the conditional coverage probabilities.

Table 3.4: Hinge-spreads (see Tukey(1977)) tor conditional coverage
* robab~lIty in

Gaussian slash

size-20 3.50% 3.73%
sign intervals size=10 3.66%* 2.58%,

sizen5 2.44% 5.35%

i -

size=20 1.25% 3.32%
Wilcoxon intervals size-10 1.301, 4.00%,

size=5 2.44% 5.35%

(*: Entries tor sample size 5 are tor the "range"-interval)

The sign interval procedure is getting worse in the slash

situation trom samples ot size 10 to 20 as tar as stability ot the

conditional coverage level is concerned. The Wilcoxon interval seems

to improve. On the whole it is surprising how little the increase in

sample size stabilizes the conditional coverage levels.

November 15, 1983
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Both interval procedures are bad tor very small samples in the

heavy-tailed slash situation. Looking across situations, the two

confidence intervals are complementary as well. The sign interval is

more stable in the slash tor the intermediate sample size -- whereas

* the Wilcoxon interval is better in the Gaussian. It we adopt a

measure ot variation which uses more ot the information in the tails

o the distribution -- like the standard deviation -- the ettects

come out even more clearly. They can also be seen in Figures 3.8 and

3.9, which show box plots (see: Tukey(1977)) of the conditional

coverage probabilities.

In these Figures we use the logistic trahstorms ot the conditional

coverage probabilities p, defined by

logit(p) - log( (2p .05 5 ) (3.3)

so that, on the transformed scale, a value ot zero corresponds to

exactly 95% conditional coverage, whereas positive values indicate

conditional coverage bigger than 95% and negative values indicate

coverage smaller than 95%. We hope that the distributions will be

made more symmetric by this re-expression.

In these pictures we can also see how the numbers ot Table 3.4

came about. The Wilcoxon interval in samples ot size 10 produces

quite low conditional slash coverage probabilities in some "extreme"

contigurations. This is clear from the tact, that information trom

the smallest and largest observation are sometimes used, since they

can contribute up to the 10t h and 4 6 th Walsh average. The median ok

the conditional coverage probabilities can be quite substantially

bigger than 95% (the mean over configurations). This reflects the

November 15, 1983
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Logistic transforms for 150 sampled configurations of the sian interval
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tact that the distribution of the conditional coverage probabilities

is skewed towards low values.

Asymptotically, these difterences between contigurations we have

observed here, disappear. It we repeatedly take large samples trom a

tixed shape F( ), the configurations we tall into will usually be

4' relatively similar and the conditional coverage probability tor this

situation F( ) will therefore be nearly constant. All the comments we

have made are hence about phenomena observed trequently only in small

samples.

Figures 3.10 through 3.13 show the conditional probability ot

missing the true location parameter at the lower and upper tail tor

the two nonparametric intervals and the two situations in samples o±

size 10. It becomes clear now that the two situations are indeed

quite different. Both procedures create rather unbalanced intervals

in the slash situation -- the Wilcoxon more so than the sign. Many ot

the Wilcoxon intervals are too long in one direction and often too

short in the other. The lines drawn in the pictures correspond to

intervals with exact 95% conditional coverage probability. Most o±

the intervals are below this line -- and are therefore overlong. The

fewer points above the line still bring the overall coverage to the

nominal 95%. In Gaussian samples the Wilcoxon clearly does quite a

good job and is substantially better than the sign intervals, which

show a similar behavior as in the slash situation. These plots look

* similar in samples of size 20. In that case they are, however, a bit

more concentrated tor both situations.

We can summarize what we have learned up to now by saying that,
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even though both the sign and the Wilcoxon intervals reach a fixed

contidence level across the whole sample space in all symmetric

situations, there are ditterences as soon as we look at the

conditional contidence levels. The sign intervals are more stable

than the Wilcoxon intervals it we sample from the heavy-tailed slash.

The opposite is true it we believe strictly in the Gaussian model. As

a compromise between these two extremes, we would probably choose the

Wilcoxon.

The second important thing about confidence intervals besides

coverage probability is the length distribution. Table 3.5 gives the

estimated mean lengths and coetticients ot variation.

Table 3.5: Estimated mean length and estimated coefficient of varia-
tion

Gaussian situation II slash situation
I II

s size=20 1.16 26.5% II 2.65 23.3%
size-10 1.64 29.0% II 5.39 75.2%

II
I II

Wilcoxon intervals size=20 .955 17.5% II 3.34 57.1%
size=10 1.46 25.0% II 24.51 476%

It is quite obvious that the Wilcoxon intervals are extremely long in

extreme contigurations ot size 10. Otherwise this table contirms our

view that the sign intervals are to be favored in the slash and the

Wilcoxon in the Gaussian. This tact also appears in an asymptotic

theory via Pitman ettciencies. The square root of these etticiencies

applies to asymptotic ratios ot mean lengths. The values tor the

Gaussian and slash are summarized in Table 3.6.
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Table .3.6: Square roots ot ratios ot Pitman etticiencies

methods Gaussian II slash

- I II
sign vs. Wilcoxon .8165 II 1.082

sign vs. Student's t .7975 II oo
Wilcoxon vs. Student's t .9772 II oo

We can check how well these asymptotic numbers work by comparing them

to the small sample estimated ratios, as we do in Table 3.7.

Table 3.7: Estimated ratios o mean length

II Gaussian slashIII

sizealO I| .8901 1 4.55
sign vs. Wilcoxon sizea20 II .8233 1 1.2604

asympt II .8165 1.082

size-10 II .8514 13.47.
sign vs. Student's t size-20 .7966 53.71

asympt II .7975 oo

size-lO II.9566 I15.14:
Wilcoxon vs. Student's t size=20II .9675 65.24

asympt II 9772 I 0

if *: theoretical value is oo

- A comparison between the two sets o numbers shows that the

asymptotic expression is a good approximation as tar as samples ot

size 20 are concerned, but tor sample size 10 the agreement is not

good except in OWilcoxon vs. Student's tO.

Both nonparametric intervals we have considered up to now do not

leave us entirely happy and a procedure between these two extremes
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might well be a better compromise. There are at least two ways in

which one can bridge the sign and Wilcoxon. One was suggested by J.

W. Tukey and it works by trimming observations from the ordered

sample and computing Wilcoxon's signed rank statistic on what is left

over, thus omitting certain i and j entirely. The other (Policello

and Hettmansperger(1976)) works by winsorizing" the scores in

Wilcoxon's signed-rank statistic. This is equivalent to omitting

Walsh averages with li-jl>bound. (It, for example, we put the

extreme bound o± 1 on the ranks, the sign statistic, i.e. the number

o± positive observations, comes out.)

Both o± these procedures can be explained in terms ot the

triangle ot Walsh averages.

(1) trimmed Wilcoxon (2) winsorized scores

Both only take the Walsh averages in the corresponding shaded region

into account. These methods are expected to do a bit worse in the

Gaussian than the Wilcoxon but to improve in the slash.

It turns out that in samples o± size 10 the procedure which

trims the largest and smallest observation very nearly gives the same

contidence intervals as the procedure which puts a bound ot 3 on the

ranks. Both are worse in the Gaussian situation than the Wilcoxon,

which is no surprise -- but they seem to be rather close to the sign

November 15, 1983



- 49-

intervals and even a bit worse in terms ot stability ot the

conditional coverage probabilities. In the slash situation, they are

quite close to the sign intervals. In terms o± expected length these

robust intervals are an improvement (see Morgenthaler (1983)).

In samples ot size 20 the two proposed moditications ot the Wilcoxon

test statistic produce nearly identical results. Now these

Urobustifiedw rank intervals really make an improvement. In the

Gaussian situation they are between the Wilcoxon and the sign, in the

slash situation they improve over both ot them. Instead ot having a

hinge-spread of contidence levels across contigurations ot roughly 3%

(see Table 3.4), these procedures go down to about 2.5%. Figure 3.14

shows a boxplot similar to the Figures 3.8 and 3.9.

We would theretore recommend the use o± these confidence intervals

which bridge the gap between the sign and the Wilcoxon procedures tor

larger sample sizes because in a heavy-tailed case they show an

improved behavior.

4. Conclusions.

Strong contidence intervals are appealing from the point o± view

ot validity ot an interval estimator. Their conditional contidence

coettcients given any contiguration is kept above the nominal level

for both situations. We only took two situations into consideration,

but this is already a conclusive case. It we sateguard against heavy

tailedness in the way described in this report, we do not have a

ditticult job. Student's t interval is already resistant as tar as

validity is concerned. But o course many statisticians will

criticize Student's t interval as being too long in configurations
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- with outliers. The research described shows us the need tor

compromising between validity and some measure of efficiency. It we

only consider validity, we automatically sacrifice efficiency in a

rather extreme way. We considered three sample sizes (u - 5, 10 and

20) and it is rather striking how the problem of compromising between

shapes changes with changing sample size. For samples of size 5 it

turns out that Student's t intervals are nearly "optimal". As the

sample size increases this no longer holds. In order to be strong,

Student's t interval needs to be enlarged (usually in only one

direction).

In the last section of this report we examine non-parametric

confidence intervals. It becomes clear that a stable overall

confidence coefficient does not ensure a good behavior of the

conditional contidence coetticients.

4
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